NOMS Prénoms des élèves du groupe :

•

•

Travail de groupe nº 2

1 heure

	Exercice 1	Exercice 2	Exercice 3	Exercice 4	Exercice 5	BONUS	Tenue du groupe
Total	3	4	3	4	4	2	2

Exercice 1

Soit la suite (u_n) définie pour tout entier naturel n par : $u_{n+1} = \frac{2u_n + 1}{u_n + 2}$ et $u_0 = 2$.

- 1. Calculer u_1 , u_2 et u_3 .
- 2. Que peut-on conjecturer sur le sens de variation de cette suite?
- 3. On admet que : $\forall n \in \mathbb{N}, u_n > 1$.

Démontrer votre conjecture donnée à la question précédente.

Exercice 2

Soit la suite (v_n) définie par : $v_{n+1} = v_n^2 - 2v_n + 2$ et $v_0 = 1$.

- 1.(a) Calculer v_1 , v_2 et v_3 .
 - (b) Conjecturer le sens de variation de la suite (v_n) .
- 2. En prenant pour premier terme $v_0 = 3$, A-t-on la même conclusion qu'à la question 1.?
- 3. Y-a-t-il une autre valeur de v_0 qui donnerait la même conclusion qu'à la question 1.?

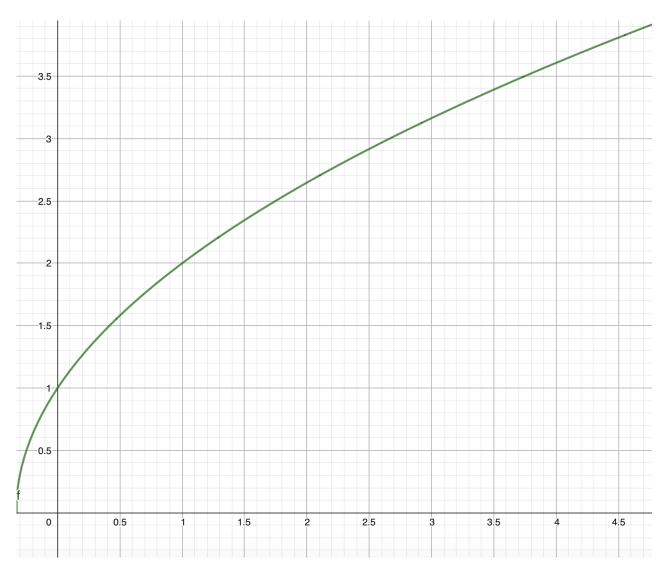
Exercice 3

Un capital de 1000 euros est placé à intérêts composés (un capital est dit placé à intérêts composés si à l'issue de chaque période du placement, les intérêts s'ajoutent au capital et apporteront eux-mêmes de nouveaux intérêts pour les périodes suivantes) au taux annuel de 3%. On note C_n le capital disponible au bout de n années.

- 1. Exprimer C_{n+1} en fonction de C_n .
- 2. Calculer C_1 , C_2 et C_3 .
- 3. La suite (C_n) est-elle croissante? Justifier (on admettra que les termes de la suite sont strictement positifs).

Exercice 4

Soit la suite (u_n) définie par : $\forall n \in \mathbb{N}, \ u_n = n^2 - 2n - 2$


Étudier le sens de variation de cette suite définie explicitement en utilisant deux méthodes différentes.

TG 2: Suites 1/2

Exercice 5

On considère la suite (v_n) définie par : $v_{n+1} = \sqrt{3v_n + 1}$ et $v_0 = 2$.

- 1. Calculer v_1 , v_2 et v_3 (on donnera les valeurs approchées à 10^{-3}).
- 2. Représenter graphiquement les premiers termes de la suite sur le graphique ci-dessous.

3. La suite semble-t-elle converger? Vers quelle valeur? Justifier ce choix en résolvant une équation.

BONUS

Soit (u_n) la suite définie pour tout $n \in \mathbb{N}$, par $u_n = 2\sqrt{n} + 2$.

- 1. Écrire une fonction Python permettant de calculer pour un n donné la valeur de u_n .
- 2. Compléter votre programme, en utilisant cette fonction Python, afin que s'affiche les termes de u_0 à u_{20} .

TG 2: Suites 2/2